(2)^2+y^2=25

Simple and best practice solution for (2)^2+y^2=25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2)^2+y^2=25 equation:



(2)^2+y^2=25
We move all terms to the left:
(2)^2+y^2-(25)=0
determiningTheFunctionDomain y^2-25+2^2=0
We add all the numbers together, and all the variables
y^2-21=0
a = 1; b = 0; c = -21;
Δ = b2-4ac
Δ = 02-4·1·(-21)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{21}}{2*1}=\frac{0-2\sqrt{21}}{2} =-\frac{2\sqrt{21}}{2} =-\sqrt{21} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{21}}{2*1}=\frac{0+2\sqrt{21}}{2} =\frac{2\sqrt{21}}{2} =\sqrt{21} $

See similar equations:

| 1,122=6(x+16) | | 4.75x=54x+2.50 | | 2x+15+26=180 | | y=10(1.5)^8 | | 2*4x^2=1 | | 2x4^2=1 | | -4.8x=240 | | 2s+2=6s-6 | | 2(4–2r)=-2(r+5) | | y=900(.91) | | -9u^2+30u-25=0 | | 0=-9(m-93) | | 43=4/8u | | 12×d=84 | | 4.75=54x+2.50 | | y=100(.98) | | 0.6p=0.2(40-p)=0 | | 6x+18-6=24 | | 7(d+2)=70 | | 3(x-2)-x=7+5x-9-3x | | -2u^2+9u+5=0 | | 4(3x+6)−6(4x−7)=12x+3(4x−7) | | -13+n+5+6=4n-4 | | 5^x-2=125^x | | 10=7x-9x | | 37=x/5+12 | | 25x+250=50x+150 | | 5x÷2-x=x÷10-21÷5 | | -2(h+42/3)=91/2 | | -2/11=b/13 | | 3x-7/5+x+3/4=7 | | 12/s=4;s=3 |

Equations solver categories